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Technological innovations have produced modern biomedical 
data that are increasingly complex and high-dimensional
Object Data: data consisting of multiple (often many) 
measurements on some type of structured space.
Functional Data: Time series, measurements on spatial grids, 

spectral data; e.g. accelerometers, copy number, mass spectra
Quantitative Image Data: pixel intensities represent some 

quantitative measure; e.g. fMRI, 2DGE proteomics, LC-MS/GC-MS
Functions on other Manifolds: spheres or closed surfaces;           

e.g. ophthalmological data; corticol surface thickness
Other Objects: shapes, trees, graphs (pathways)
Multi-way Objects: time-space data, spatial functional data, 

longitudinal functional data; e.g. ERP, fMRI
Genomic Data: View entire genome as single structured object
Internal structure can be simple and driven by basic geometry 
(space/time proximity), or can be more complex and driven by 

underlying biology (functional connectivity/pathways)
Efficient statistical methods should account for this 

structure in the modeling.  (structure~correlation)
2Looking Beyond the Lamppost...



Lower pH Higher pH

Higher 
mass

Lower 
mass

Protein Spots 
(100’s-1000’s/gel)

t1

t2

Each gel scanned, resulting in 2d image (1 MP)
Frequently have multiple gels per individual

Goal: Associate proteins with factors of interest
Other assays: MS, lipids + metabolites3Looking Beyond the Lamppost...
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Fazio MA, et al. (2012).  Age-related changes in Human 
Peripapillary Scleral Stiffness.  Submitted.
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Wei L, et al. (2003).  Changes in hippocampal volume and 
shape across time distinguish dementia of the Alzheimer 
type from healthy Aging.  Neuroimage 20(2): 667-682.
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1. Group Comparison: regression of objects on 
scalar class predictors to assess which 
“parts” of the object differ across groups

Object ~ Class + Covariates
2. Group Discrimination: classify subjects into 

groups based on their object data; e.g. by 
regressing class on object.

Class ~ Object + Covariates
3. Clustering: unsupervised clustering of 

subjects based on their object data.
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Compute summary statistics from object and then 
perform standard analyses on the summaries
Examples:
Accelerometers: average daily levels, % above threshold
Mass spectra: detect peaks, then analyze by peak
2dGE: detect spots, then analyze by spot
fMRI: integrate within known brain regions (ROI)
Copy number: segments of gain/loss on individual array
Benefits: reduces dimensionality, can incorporate 
biological information about objects, easy to use
Drawbacks: loses information not in summaries
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Apply standard statistical tests on each element of 
the object, treating them as independent
Examples:
Time series: separate analyses at each time point
fMRI: separate analyses for each voxel in the brain
ERP: separate analyses for each EEG sensor
Benefits: retains all information, easy to implement 
Drawbacks: doesn’t borrow strength across 
measurements within an object; ignores internal 
structure; inefficient; may give misleading 
inference
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“No object 
element is an 
island”

They have 
neighbors, and 
should be 
allowed to share 
with and borrow 
from their 
neighbors



Increasingly, statisticians are developing innovative 
statistical models to account for internal structure in 
objects, e.g. functional data analysis (FDA).
Note: Dimensionality typically precludes modeling 
within-object correlation in unstructured fashion 
Alternative: use basis functions/frames to parsimoniously 
capture the local (splines, kernels, wavelets) or global 
(PCA) internal structure within the objects.
Challenges:   Scale up to extremely large data sets
Provide unified inference that accounts for sources of var.
Handle multiple types of objects with different structure
Be able to model common types of between-object 

structure from experimental design (subsamples; 
nested designs; longitudinal objects) 18Looking Beyond the Lamppost...



General suite of methods for object data analysis
Flexible enough for broad class of objects
Models object~scalar, scalar~object, object~object
Can account for various types of between-object 
structure induced by experimental design
Yields unified Bayesian inference, including 
pointwise and joint intervals and FDR thresholds
Automated code that scales up to EXTREMELY 
large data sets (up to 100s of GBs)
Can incorporate biological knowledge as well as 
uncover unknown structure
Modular approach: extendible in many ways as we 

keep building on the core method/code
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 Xi: exponential family response, g: link function
 Yia(t): object predictor of type a, subject i
 t: index for elements w/in object (may be multi-dim)
 Ba(t): object regression coefficient for type a
 Vi and vectors of scalar predictors and coeffs.
 Zih and Uh: random predictors/coeffs at level h
 i: residual error in latent space
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 Yi(t): object response for subject i for element t
 Xia and Ba(t): predictor and fixed effect object a
 Zhib and Uhb(t) : predictor and random effect objects
 Ei(t): residual for subject i at object element t
 Cov{Uhb(t1),Uhb’(t2)}=P(h)bb’ Qh(t1,t2); Cov{Ei(t1),Ei’(t2)}=Rii’ S(t1,t2)
 P(h), R: between-object covariance matrices
 Qh(t1,t2), S(t1,t2): within-object covariance surfaces 

(form reflects internal structure of objects)
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Y=matrix (N × T) of object data, on same T elements
Write out basis function expansion: Y=Y*
 =matrix (T* × T) of basis functions on grid of size T
Y*=matrix (N × T*) of basis coefficients (T* coefficients)
Compute basis coefficients Y*=Y

transformation matrix (data space Y to basis space Y* )
inverse transform matrix (basis space Y* to data space Y )
Multi-Domain Modeling Approach

1. Transform objects into alternative domain (YY*)
2. Fit alternative-domain object regression models (ORMM/GLOMM)
3. Transform object coefficients back to data domain {B*B(t)}
4. Perform Bayesian inference in data domain
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Types of Basis Functions
Local: splines, Fourier, wavelets, needlets (sphere)
Empirical: PC, fPC, sPC, gPC, IC, PLS, GLRAM
Biological: ROI, peak templates, pathway bases
For many basis functions, special fast algorithms 
exist for computing Y* from Y or Y from Y*
E.g., wavelets O(T), Fourier O(TlogT), PC, IC
For many other basis functions, the transform 
and inverse transform matrices  and - are 
sparse, and only need be computed once.
Many bases yield parsimonious representations , 
i.e. T* T, greatly reducing dimensionality while 

retaining most all information in data
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 Y*
ik: basis coefficient k for subject i

 B*
ak , U*

hbk , E*
ik : basis space fixed, random, residual

 Cov{Uhbk,Uhb’k}=Ph
bb’qhk Cov{Eik,Ei’k}=Rii’ sk

 Computing is parallelizable and linear in T*

 Form of Qh(t1,t2) and S(t1,t2) defined by T* dimensional manifold: 
Qh(t1,t2)=’Q*

h and S(t1,t2)=’S*Q*
h=diagk{qhk} S*=diagk{sk}

 Covariance of dimension T* but flexibly capturing 
internal structure of object given suitably choice of basis

 Random effects U*
hbk and residuals E*

ik assumed Gaussian
or for robust regression, heavier tailed distribution (DE) 
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Could fit ORMM without using Bayesian modeling
Mixed model (perhaps with penalty for regularization) 
So why do we use a Bayesian approach?
Our Bayesian approach does not require subjective priors
Automatically obtain pointwise/joint inference all model quantities

• Posterior probabilities of effect sizes: connection to FDR
Unified modeling approach integrates over all variability
MCMC can be challenging in some high dimensional 

contexts, but here we have stable, automated algorithm.
Straightforward approach to handle measurement error 

and missing data. (Morris, et al. 2006 JASA)
Natural way classification.(Zhu, Brown, Morris, 2012 Biom)
Extendability: can make other distributional assumptions 

and sparsity priors and get improved performance 
(e.g, robust FMM; Zhu, Brown, Morris 2011 JASA)
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Spike0/Gaussian, DE, Spike0/DE, NG, NEG, NMIG, HShoe
Performs variable selection/nonlinear shrinkage on B*

ak
E.g. Gaussian = ridge regression, DE = Lasso
Induces structured regularization of Ba(t), which is a type of 

smoothing within manifold defined by basis functions that 
should take internal structure of the object into account.

Amount of regularization depends on set of sparsity
hyperparameters, which can be estimated from data or 
given their own hyperpriors.
This regularization should lead to improved estimation 
and inference on fixed effect functions Ba(t)
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Model fit by automated MCMC (MH w/in Gibbs)
Parallelizable in MCMC iterations and/or basis coeffs. k
Inverse transform  used to transform posterior 
samples back to data space, e.g. Ba(t), for inference
Useful types of Bayesian Inference
Pointwise posterior credible intervals
Joint posterior credible intervals
Posterior probability (pp) of minimal effect size 

(posterior probability maps on object space)
Can find threshold on pp that corresponds to average 

Bayesian FDR of .  This approach takes both 
statistical and practical significance into account 

(Morris, et al. 2008 Biometrics)
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Goal: Find brain proteins related to cocaine addiction
Animal Model:
Mice trained to obtain cocaine by pressing lever.
21 mice, 6 short access (1hr), 7 long access (12hr), 8 ctrl
Mice euthanized, brain tissue harvested, microdissected
2d Gels
Total of 53 gels from 21 rats, run on central nucleus of 

amygdala region (CeA) of brain
Analysis objective:
Find proteins that are overexpressed/underexpressed

in cocaine exposure group relative to controls.
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Standard analysis approach: Spot-based
Detect spots, quantify spot volumes, then analyze
Many flaws in existing commercial spot detection 

algorithms (Gutstein and Clark 2009)
Pinnacle: improved spot detection/quantification 

(Morris, Clark, Gutstein 2008, Morris, et al. 2010)
Still limited in ability to detect and resolve all 
protein spots; e.g., co-migrating proteins
Can we build models suitable for the scanned 
images themselves and flag significant regions?
Would such an approach find more proteins and 
better separate effects of co-migrating proteins?
Morris (2011 Statistics and Its Interface): summary of

work in statistics for proteomics data
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 53 gels, 21 mice, 3 groups (C/SA/LA), run in blocks
 (Morris, et al. 2011 AOAS): with Gutstein, Baladan.
 MODEL:
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 Construct overall mean, case-control images:
Mean Image: M(t1,t2)=1/3 {B0(t1,t2) + B1(t1,t2) + B2(t1,t2)}

Case-Control : C(t1,t2)= B1(t1,t2) - B0(t1,t2)

 Goal: Find regions of gel for which C(t1,t2) is “significant”    
(significant evidence of at least 1.5-fold 

case/control ratio)
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Results:
WFMM Flagged a total of 27 contiguous regions as 

significant for cocaine vs. control
Spot-based method (Pinnacle) found only 17 spots.
It appeared that WFMM was able to find 
essentially all results found by spot-level 
analysis, plus many additional results
Many of these were found in the tail of an abundant 

spot, and may correspond to co-migrating proteins
This suggests that perhaps there is more measurable 

proteomic information on 2D gels than thought, and 
image-based analyses can extract more of that 
information than spot-based approaches
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Cancer is characterized by various types of 
genomic instabilities, including in copy number
Discovery of prevalent copy number changes in given cancer can 

help better characterize a given cancer, and potentially provide 
markers for detection, prognosis, and prediction of response

Lung cancer array CGH data set (Coe, et al. 2006)
Copy number arrays from 39 lung cancer cell lines, 4 

types: small cell classical (SC) and variant (SV), non-
small cell adenocarcinoma (NA) and squamous (NS)
Goal: Find shared aberrations within each of 4 lung 

cancer types, and assess differences between subtypes
Shared aberrations: genomic regions with copy 

number changes that characterize a population
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Modeled using FMM with constant basis functions; 
prior: mixture with non-local alternatives
Baladandayuthapani, et al. (2010 JASA)
RJMCMC involving stochastically varying cut points 

defining regions of shared aberration
Unified model that borrows strength across/within arrays
Computed posterior probability of gain or loss for each 

group, and posterior probabilities of group differences
Results:
Simulation study showed significant gains in 

sensitivity & specificity for detecting shared 
aberrations over alternative multi-step methods
Relative improvement was greater as:

• Number of arrays in group increased
• Noise level increased 43Looking Beyond the Lamppost...
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Chromosome 9
• Found 34 genes in flagged regions known to 
be related to lung cancer, many more than 
found in original multi-step analysis.



Each type of basis has strengths/weaknesses
Empirical: adaptive, global, may be inconsistent
Local: flexible for local structure, not global
Biological: based on science, may lose information
Hybrid basis functions can be constructed that combine 
strengths and mitigate weaknesses of different bases
Sequential hybrids: Fit one type of basis, take null space of 

projection, then apply another basis transform to the null space
Composite hybrids: Fit one type of basis, apply second basis 

transform to basis coefficients from first transform
E.g., fMRI brain volumes:  ROI+wavelets; PC(ROI)+wavelets
Hybrid basis functions can be used on genomic data to 
simultaneously perform pathway/gene/exon level analyses while 
accounting for local, functional, and interactive structure in genome

Works with existing GLOMM and ORMM code
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All regression terms in ORMM (and GLOMM) assume 
linear relationship between object Yi(t) and scalar Xia

Xia Ba(t) 
This linearity assumption can easily be relaxed to allow 
additive nonparametric relationships between Yi(t) & Xia

fa(x,t)
This is done in straightforward fashion using the 
existing ORMM code by specifying a design matrix X
and specific sparsity priors on Ba that correspond to 
O’Sullivan splines (smoothing splines are special case).
We can do any desired Bayesian inference on fa(x,t) 
A similar approach can be used with object predictor 

(GLOMM) model 
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The ORMM can also be straightforwardly extended to 
regress object type 1 Yi(t) on object type 2 Xia(s)

Yi(t) = ∫ Xia(s) Ba(s,t) ds
The multi-domain modeling approach is applied by 
transforming both Yi(t) and Xia(s) using respective bases 
and then fitting the alternative domain ORMM.
Again, existing code can be used for the model fitting
This approach allows us to investigate the relationships 
between different types of objects on same subject, e.g. 
fMRI and ERP data or different types of genomics data. 
Many other extensions of this framework are possible, 
e.g. to model complex multi-way object data in 

unprecedentedly flexible and efficient ways
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Freely available standalone executable 
https://biostatistics.mdanderson.org/SoftwareDownload
Herrick and Morris (2006): paper on computational issues
Automated: Can just specify Y, X, Z and method will run if happy 

with default choices of basis, levels, priors
Produces posterior samples for all model parameters, plus 

standard summary statistics, including posterior means, variances, 
quantiles, probabilities of effect sizes

Can be used to flag regions of object related to outcomes of 
interest with effect size  and FDR 

R wrapper for code, with plotting functions under development
Wavelet bases built in, can input trans. data Y*; others to be added
Our methods have been used for various object data types
Our analyses: colon carcinogenesis, accelerometer, MS, 2DGE, 

sonic data, copy number
Outside researchers: fMRI, ERP, tiling arrays, forestry data, 

ophthalmology data
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Biomedical research experiencing an explosion of 
complex, high-dimensional data.
Object data: general term encompassing many of 
these types of structured data.
MaTaDOR: suite of object regression methods 
using multi-domain modeling approach
Handles object responses and/or predictors
Can capture between-object structure induced by design
Applies to a broad class of object data
Various internal structure captured by basis functions, 

local, empirical, biological, and hybrid basis functions
Automated, parallelizable code, linear in T* (# of bases), 

and yields various types of unified Bayesian inference
 Framework modular; extendible in many ways.
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A number of papers describing both feature extraction and functional mixed model methods, plus papers 
giving overviews of proteomics and proteomic data analysis are available on my website 
(http://works.bepress.com/jeffrey_s_morris)

Code for fitting Bayesian multi-domain FMM is also available on the web 
http://biostatistics.mdanderson.org/SoftwareDownload/

Code will continue to be updated to make it more user friendly in the 
future, and to contain features from recent publications.
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